Addition
$$ \begin{aligned} &\forall x \\;f(x, 0 ) =x \newline &\forall x \forall y \\;f(x, S(y)) = S(f(x, y)) \end{aligned} $$Multiplication
$$ \begin{aligned} &h(x,0)\\;:=\\;0\newline &h\bigl(x,S(y)\bigr) \\;:=\\;f\bigl(h(x,y),\\,x\bigr) \end{aligned} $$Generated by AI.
Statements
Zero is neutral for addition
$$ \forall x\;\bigl(x + 0 = x\bigr). $$Every number plus zero is itself.
Successor distributes over addition
$$ \forall x\,\forall y\;\bigl(x + S(y) = S(x + y)\bigr). $$Adding the successor of $y$ to $x$ is the successor of $(x+y)$.
Zero annihilates multiplication
$$ \forall x\;\bigl(x \cdot 0 = 0\bigr). $$Any number times zero is zero.
Successor distributes over multiplication
$$ \forall x\,\forall y\;\bigl(x \cdot S(y) = x\cdot y + x\bigr). $$Multiplying by the successor is like multiplying and then adding once more.
Addition is commutative
$$ \forall x\,\forall y\;\bigl(x + y = y + x\bigr). $$Order doesn’t matter in addition.
Addition is associative
$$ \forall x\,\forall y\,\forall z\;\bigl((x + y) + z = x + (y + z)\bigr). $$You can reassociate sums freely.
Multiplication is commutative
$$ \forall x\,\forall y\;\bigl(x \cdot y = y \cdot x\bigr). $$Order doesn’t matter in multiplication either.
Distributive law
$$ \forall x\,\forall y\,\forall z\;\bigl(x \cdot (y + z) = x\cdot y + x\cdot z\bigr). $$Multiplication distributes over addition.
Cancellation law for addition
$$ \forall x\,\forall y\,\forall z\;\bigl(x + z = y + z \;\rightarrow\; x = y\bigr). $$If adding the same $z$ to two numbers yields equal sums, the numbers were equal.
Strictness of successor
$$ \forall x\;\bigl(S(x) \neq 0\bigr). $$No successor ever equals zero.
Injectivity of successor
$$ \forall x\,\forall y\;\bigl(S(x) = S(y) \;\leftrightarrow\; x = y\bigr). $$Different numbers have different successors.
The Induction Schema For any formula $\varphi(x)$ in the language of PA one has the axiom‐schema instance
$$ \bigl[\;\varphi(0)\;\wedge\;\forall x\,( \varphi(x)\rightarrow \varphi(S(x)))\bigr]\;\rightarrow\;\forall x\,\varphi(x). $$If a property holds of 0 and is preserved by successor, then it holds of all naturals.
Proofs
Below are sketch‐proofs—using only the Peano axioms plus the usual defining equations for “+” and “·” and the induction schema—of
- Associativity of addition
- Commutativity of addition
- Associativity of multiplication
- Commutativity of multiplication
For reference, the defining axioms are:
$$ \begin{aligned} &x+0 = x,\\ &x + S(y) = S(x+y),\\ &x\cdot 0 = 0,\\ &x\cdot S(y) = x\cdot y + x, \end{aligned} $$and induction is:
$$ \bigl[\varphi(0)\wedge\forall n\,(\varphi(n)\to\varphi(S(n)))\bigr]\;\to\;\forall n\,\varphi(n). $$1. Associativity of addition
Theorem.
$$ \forall x\,\forall y\,\forall z\;\bigl(x + (y + z) = (x + y) + z\bigr). $$Proof (by induction on $z$).
Base $z=0$:
$$ x + (y+0) = x + y \quad\text{and}\quad (x+y)+0 = x+y $$by the defining clause $y+0=y$ and then $w+0=w$.
Inductive step: assume
$$ x + (y + z) = (x + y) + z \quad\text{for some }z, $$and prove for $S(z)$:
$$ \begin{aligned} x + \bigl(y + S(z)\bigr) &= x + S\bigl(y+z\bigr)\quad(\text{by def.})\\ &= S\bigl(x + (y+z)\bigr)\quad(\text{by def.})\\ &= S\bigl((x+y) + z\bigr)\quad(\text{IH})\\ &= (x+y) + S(z)\quad(\text{by def.}), \end{aligned} $$completing the induction. ∎
2. Commutativity of addition
Theorem.
$$ \forall x\,\forall y\;\bigl(x + y = y + x\bigr). $$We first prove two helper lemmas.
Lemma 2.1. $\forall x;(0 + x = x).$
By induction on $x$.
- Base $x=0$: $0+0=0$.
- Step: $0+S(k)=S(0+k)=S(k)$ by def. and IH.
Lemma 2.2. $\forall x,\forall y;(S(x) + y = S(x+y)).$
By induction on $y$.
Base $y=0$: $S(x)+0 = S(x)$ and $S(x+0)=S(x)$.
Step:
$$ \begin{aligned} S(x) + S(k) &= S\bigl(S(x)+k\bigr)\quad(\text{def.})\\ &= S\bigl(S(x+k)\bigr)\quad(\text{IH})\\ &= S\bigl(x + S(k)\bigr)\quad(\text{def.}), \end{aligned} $$so both sides agree.
Now the main proof by induction on $y$:
Base $y=0$:
$$ x + 0 = x \quad\text{and}\quad 0 + x = x $$by the defining equations and Lemma 2.1.
Step assume $x + k = k + x$. Then
$$ \begin{aligned} x + S(k) &= S\bigl(x + k\bigr)\quad(\text{def.})\\ &= S\bigl(k + x\bigr)\quad(\text{IH})\\ &= S(k) + x\quad(\text{Lemma 2.2 with }x\mapsto k,\;y\mapsto x). \end{aligned} $$Hence $x + S(k) = S(k) + x$. ∎
3. Associativity of multiplication
Theorem.
$$ \forall x\,\forall y\,\forall z\;\bigl(x\cdot(y\cdot z) = (x\cdot y)\cdot z\bigr). $$Proof (by induction on $z$).
Base $z=0$:
$$ x\cdot (y\cdot 0) = x\cdot 0 = 0 \quad\text{and}\quad (x\cdot y)\cdot 0 = 0. $$Step assume $x\cdot(y\cdot k) = (x\cdot y)\cdot k$. Then
$$ \begin{aligned} x\cdot\bigl(y\cdot S(k)\bigr) &= x\cdot\bigl(y\cdot k + y\bigr)\quad(\text{def. on mult.})\\ &= x\cdot(y\cdot k) + x\cdot y\quad(\text{distributivity})\\ &= (x\cdot y)\cdot k + x\cdot y\quad(\text{IH})\\ &= (x\cdot y)\cdot S(k)\quad(\text{def. on mult.}), \end{aligned} $$completing the induction. ∎
4. Commutativity of multiplication
Theorem.
$$ \forall x\,\forall y\;\bigl(x\cdot y = y\cdot x\bigr). $$We first note the lemma $\forall x,(0\cdot x = 0)$, which is proved by induction on $x$ exactly like Lemma 2.1 above.
Then induct on $y$:
Base $y=0$:
$$ x\cdot 0 = 0 \quad\text{and}\quad 0\cdot x = 0. $$Step assume $x\cdot k = k\cdot x$. Then
$$ \begin{aligned} x\cdot S(k) &= x\cdot k + x\quad(\text{def.})\\ &= k\cdot x + x\quad(\text{IH})\\ &= x + k\cdot x\quad(\text{commutativity of + from §2})\\ &= S(k)\cdot x\quad(\text{def. on mult.}). \end{aligned} $$Hence $x\cdot S(k) = S(k)\cdot x$. ∎
Predicates
Zero
$$ \mathrm{Zero}(x)\\;\equiv\\;x=0. $$Successor
$$ \mathrm{Succ}(x,y)\\;\equiv\\;y=S(x). $$One
$$ \mathrm{One}(x)\\;\equiv\\;x=S(0)\\;=\\;\overline{1}. $$Addition
$$ \mathrm{Add}(x,y,z)\\;\equiv\\;x + y = z. $$Multiplication
$$ \mathrm{Mul}(x,y,z)\\;\equiv\\;x \times y = z. $$Less-than
$$ x < y \\;\equiv\\;\exists z\bigl(z \neq0\\;\wedge\\; x + z = y\bigr). $$Less-or-equal
$$ x \le y \\;\equiv\\;\exists z\\,(x + z = y). $$Divisibility
$$ x\mid y \\;\equiv\\;\exists z\\,(x \times z = y). $$Evenness
$$ \mathrm{Even}(x)\\;\equiv\\;\exists y\\,(x = y + y). $$Oddness
$$ \mathrm{Odd}(x)\\;\equiv\\;\exists y\bigl(x = (y + y) + S(0)\bigr). $$Square-number
$$ \mathrm{Square}(x)\\;\equiv\\;\exists y\\,(y \times y = x). $$Prime
$$ \mathrm{Prime}(x)\\;\equiv\\;x \neq0\\;\wedge\\;x \neq S(0)\\;\wedge\\;\forall y\forall z\Bigl(x = y\times z \\;\rightarrow\\;(y = S(0)\\;\lor\\;z = S(0))\Bigr). $$Factorial
$$ \mathrm{Fact}(n,m)\\;\equiv\\;\bigl[n=0\wedge m=S(0)\bigr]\\;\lor\\;\exists u\exists v\bigl[n=S(u)\wedge \mathrm{Fact}(u,v)\wedge m = S(u)\times v\bigr]. $$Power of 2
$$ \mathrm{Pow2}(x)\\;\equiv\\;\bigl[x = S(0)\bigr]\\;\lor\\;\exists y\bigl(\mathrm{Pow2}(y)\\;\wedge\\;x = y + y\bigr). $$Exponentiation (as a ternary relation)
$$ \mathrm{Exp}(a,b,c)\\;\equiv\\;\bigl[b=0\wedge c=S(0)\bigr]\\;\lor\\;\exists u\exists v\bigl[b=S(u)\wedge \mathrm{Exp}(a,u,v)\wedge c = a \times v\bigr]. $$
Proofs
1. $ \displaystyle PA\;\vdash\;\forall x\,(x + 0 = x)$
We prove by induction on $x$.
$$ \begin{aligned} \text{(Axiom)}\quad& x + 0 = x &&\text{is one of the defining axioms of \(+\).}\newline \text{Base case:}&\quad 0 + 0 = 0 &&\text{instantiate the axiom at \(x:=0\).}\newline \text{Inductive step:}&\quad\text{Assume }u + 0 = u.\newline &\quad S(u) + 0 = S\bigl(u + 0\bigr) &&\text{by the axiom }x + 0 = x\text{ with }x:=S(u).\newline &\quad\\;\\;=\\;S(u) &&\text{by the inductive hypothesis.}\newline &\quad\text{Hence }(S(u)+0 = S(u)).\newline \text{By Induction:}&\quad PA\vdash\forall x\\,(x+0=x). \end{aligned} $$2. $ \displaystyle PA\;\vdash\;\forall x\,(x \le x)$
Recall $x\le y$ is defined as $\exists z\,(x+z = y)$.
$$ \begin{aligned} &\text{Fix an arbitrary \(x\).}\newline &\text{We exhibit the witness \(z:=0\).}\newline &\quad x + 0 = x &&\text{by the axiom just proved above.}\newline &\therefore\\;\exists z\\,(x+z = x).\newline &\text{Since \(x\) was arbitrary, }PA\vdash\forall x\\,(x\le x). \end{aligned} $$No induction needed beyond our previous theorem.
3. $ \displaystyle PA;\vdash;\forall x\,\forall y\,\forall z;\bigl(x<y \wedge y<z ;\to; x<z\bigr)$
Here $x<y$ is shorthand for $\exists u\,[u\neq0\wedge x+u = y]$.
$$ \begin{aligned} &\text{Fix \(x,y,z\), and assume }x